Exploring System Design in Depth

๐Ÿ—๏ธ Exploring System Design in Depth

From Fundamentals to Scalable Architectures (with Real-World Examples) ๐ŸŒโš™๏ธ

โ€œGreat systems arenโ€™t built by chance โ€” theyโ€™re designed with clarity, trade-offs, and foresight.โ€

System Design is one of the most critical skills for backend, full-stack, and senior engineers. Itโ€™s not about coding โ€” itโ€™s about thinking at scale ๐Ÿง .

In this blog, weโ€™ll cover: โœ… Core concepts โœ… Key terminologies โœ… Architecture patterns โœ… Tools & technologies โœ… Real-world examples โœ… Advanced interview Q&A

Letโ€™s dive in ๐Ÿ‘‡

1_AODAfmezsrZTPl8lWyEuQg (1)


๐Ÿ”น What is System Design?

System Design is the process of defining:

  • Architecture ๐Ÿ›๏ธ
  • Components ๐Ÿงฉ
  • Data flow ๐Ÿ”„
  • Communication ๐Ÿ•ธ๏ธ
  • Scalability & reliability โšก

๐ŸŽฏ Goal:

Build a system that is:

  • Scalable
  • Reliable
  • Maintainable
  • Cost-efficient

๐Ÿ“Œ Example: Designing Instagram, Uber, YouTube, or a Payment Gateway.


๐Ÿ”น Functional vs Non-Functional Requirements

๐Ÿงฉ Functional Requirements

๐Ÿ‘‰ What the system should do

Examples:

  • User can upload photos ๐Ÿ“ธ
  • User can like and comment โค๏ธ
  • User can follow other users ๐Ÿ‘ฅ

โš™๏ธ Non-Functional Requirements

๐Ÿ‘‰ How well the system performs

Requirement Meaning
Scalability ๐Ÿ“ˆ Handle growing users
Availability ๐ŸŸข System uptime
Latency โšก Response time
Consistency ๐Ÿ”’ Data correctness
Security ๐Ÿ” Data protection

๐Ÿ“Œ Interview Tip: Always clarify these first!


๐Ÿ”น High-Level vs Low-Level Design

๐Ÿ—บ๏ธ High-Level Design (HLD)

  • Services
  • Databases
  • APIs
  • Communication flow

๐Ÿ“Œ Example:

Client โ†’ API Gateway โ†’ Auth Service โ†’ Media Service โ†’ DB

๐Ÿ”ง Low-Level Design (LLD)

  • Classes
  • Methods
  • Data models
  • Algorithms

๐Ÿ“Œ Example:

class User
  has_many :posts
  has_many :followers
end

๐Ÿ”น Scalability: Vertical vs Horizontal

โฌ†๏ธ Vertical Scaling

  • Increase CPU / RAM
  • Easy but limited

โžก๏ธ Horizontal Scaling

  • Add more servers
  • Complex but scalable ๐Ÿš€

๐Ÿ“Œ Modern systems prefer Horizontal Scaling


๐Ÿ”น Load Balancer โš–๏ธ

Distributes traffic across servers.

  • Round Robin ๐Ÿ”„
  • Least Connections ๐Ÿ“‰
  • IP Hashing ๐Ÿงฎ

Tools:

  • Nginx
  • HAProxy
  • AWS ALB / ELB

๐Ÿ“Œ Example:

User โ†’ Load Balancer โ†’ App Server 1 / 2 / 3

๐Ÿ”น Databases: SQL vs NoSQL ๐Ÿ—„๏ธ

๐Ÿงฑ SQL (Relational)

  • MySQL
  • PostgreSQL

โœ” Strong consistency โœ” Structured schema


๐ŸŒŠ NoSQL

  • MongoDB
  • DynamoDB
  • Cassandra

โœ” Flexible schema โœ” Massive scale

๐Ÿ“Œ Rule of Thumb:

Transactions โ†’ SQL Scale & Speed โ†’ NoSQL


๐Ÿ”น Database Sharding ๐Ÿงฉ

Splitting data across databases.

Types:

  • Range-based
  • Hash-based
  • Geo-based ๐ŸŒ

๐Ÿ“Œ Example:

Users Aโ€“M โ†’ DB1
Users Nโ€“Z โ†’ DB2

๐Ÿ”น Caching โšก (Speed Booster)

Avoid hitting DB every time.

Types:

  • In-memory cache
  • Distributed cache

Tools:

  • Redis
  • Memcached

๐Ÿ“Œ Example:

Client โ†’ Cache โ†’ DB (only on cache miss)

๐Ÿ”น CAP Theorem ๐Ÿง 

You can only guarantee 2 out of 3:

Term Meaning
Consistency ๐Ÿ”’ Same data everywhere
Availability ๐ŸŸข Always responds
Partition Tolerance ๐ŸŒ Survives network failure

๐Ÿ“Œ Examples:

  • CP: HBase
  • AP: Cassandra
  • CA: Traditional RDBMS (single node)

๐Ÿ”น Message Queues & Async Processing ๐Ÿ“ฉ

Decouple services & handle spikes.

Tools:

  • Kafka
  • RabbitMQ
  • AWS SQS

๐Ÿ“Œ Example:

Order Service โ†’ Queue โ†’ Email Service

โœ” Improves reliability โœ” Handles high traffic


๐Ÿ”น Microservices Architecture ๐Ÿงฉ

Each service:

  • Independent
  • Own database
  • Own deployment

๐Ÿ“Œ Example Services:

  • Auth Service ๐Ÿ”
  • Payment Service ๐Ÿ’ณ
  • Notification Service ๐Ÿ””

Tools:

  • Docker ๐Ÿณ
  • Kubernetes โ˜ธ๏ธ
  • Service Mesh (Istio)

๐Ÿ”น API Design ๐ŸŒ

REST Principles:

  • Stateless
  • Resource-based
  • HTTP verbs

๐Ÿ“Œ Example:

GET /users/1
POST /orders

GraphQL (Advanced):

  • Fetch exact data
  • Single endpoint

๐Ÿ”น Observability & Monitoring ๐Ÿ‘€

What to Monitor:

  • Logs ๐Ÿ“œ
  • Metrics ๐Ÿ“Š
  • Traces ๐Ÿ”

Tools:

  • Prometheus
  • Grafana
  • ELK Stack
  • New Relic

๐Ÿ”น Security in System Design ๐Ÿ”

  • HTTPS
  • OAuth / JWT
  • Rate Limiting ๐Ÿšฆ
  • Encryption (at rest & in transit)

๐Ÿ“Œ Example:

User โ†’ Auth Token โ†’ Protected API

๐ŸŽฏ Advanced System Design Interview Questions (With Answers)


โ“ 1. How would you design a URL Shortener like Bitly?

Answer:

  • API Gateway
  • Hashing (Base62)
  • DB for mapping
  • Cache for hot URLs
  • Load Balancer
  • Analytics Service

๐Ÿ“Œ Key Challenge: Collision handling


โ“ 2. How do you handle millions of concurrent users?

Answer:

  • Horizontal scaling
  • Load balancers
  • Caching
  • Async queues
  • CDN for static content ๐ŸŒ

โ“ 3. How do you ensure data consistency in microservices?

Answer:

  • Saga Pattern
  • Eventual consistency
  • Message queues
  • Idempotent APIs

โ“ 4. Difference between Kafka and RabbitMQ?

Kafka RabbitMQ
Streaming ๐Ÿ“Š Messaging ๐Ÿ“ฉ
High throughput Low latency
Event replay No replay

โ“ 5. How would you design a payment system?

Answer:

  • Strong consistency
  • Idempotency keys
  • Transaction logs
  • Retry mechanism
  • Audit trail

๐Ÿš€ Final Thoughts

System Design is a mindset, not a framework.

๐Ÿง  Think in trade-offs, not perfection.

Mastering System Design will:

  • Crack senior interviews ๐Ÿ’ผ
  • Improve architectural thinking ๐Ÿ—๏ธ
  • Make you a 10x engineer ๐Ÿš€

© Lakhveer Singh Rajput - Blogs. All Rights Reserved.